Origin of the Shape of Current-Voltage Curve through Nanopores: A Molecular Dynamics Study

نویسنده

  • Takashi Sumikama
چکیده

Ion transports through ion channels, biological nanopores, are essential for life: Living cells generate electrical signals by utilizing ion permeation through channels. The measured current-voltage (i-V) relations through most ion channels are sublinear, however, its physical meaning is still elusive. Here we calculated the i-V curves through anion-doped carbon nanotubes, a model of an ion channel, using molecular dynamics simulation. It was found the i-V curve reflects the physical origin of the rate-determining step: the i-V curve is sublinear when the permeation is entropy bottlenecked, while it is superlinear in the case of the energy bottlenecked permeation. Based on this finding, we discuss the relation between the molecular mechanism of ion permeation through the biological K(+) channels and the shape of the i-V curves through them. This work also provides a clue for a novel design of nanopores that show current rectification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Effects on Nanopore Creation in Graphene and on the Impact-withstanding Efficiency of Graphene Nanosheets

Abstract Single- and multilayer graphene sheets (MLGSs) are projectile-resisting materials that can be bombarded by nanoparticles to produce graphene sheets of various sizes and distributions of nanopores. These sheets are used in a variety of applications, including DNA sequencing, water desalination, and phase separation. Here, the impact-withstanding efficiency of graphene nanosheets and the...

متن کامل

Energy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations

Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...

متن کامل

First Princiles Study of the Electron Transport Properties of Buthane-dithiol Nano-Molecular Wire

We report a first-principles study of electrical transport in a single molecular conductor consisting of a buthane-dithiol sandwiched between two Au (100) electrodes. We show that the current was increased by increasing of the external voltage biases. The projected density of states (PDOS) and transmission coefficients (T(E)) under various external voltage biases are analyzed, and it suggests t...

متن کامل

I-V Characteristics of a Molecular Wire of Polyaniline (Emeraldine Base)

In this study, Polyaniline molecule (emeraldine base) is modeled as a molecular wire and the effects of the metal/molecule coupling strength and the molecule length on the current-voltage (I-V) characteristics are numerically investigated. Using a tight-binding Hamiltonian model, the methods based on Non-equilibrium Green’s function theory, Landauer formalism and Newns-Anderson model, our calcu...

متن کامل

Ion fluxes through nanopores and transmembrane channels.

We introduce an implicit solvent Molecular Dynamics approach for calculating ionic fluxes through narrow nanopores and transmembrane channels. The method relies on a dual-control-volume grand-canonical molecular dynamics (DCV-GCMD) simulation and the analytical solution for the electrostatic potential inside a cylindrical nanopore recently obtained by Levin [Europhys. Lett. 76, 163 (2006)]. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016